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Abstract 

This paper presents a practical method for assessing the uncertainty of long-term economic 

projections. Economic variables play a central role in the Congressional Budget Office’s analysis of 

federal spending and revenues, and the uncertainty of economic projections is a key driver of the 

uncertainty about the agency’s budget projections. The presented method quantifies the uncertainty of 

economic variables by using simulations from a multivariate statistical model in which variables are 

formulated as sums of unobserved stationary and nonstationary components. Experiments on 

artificial data demonstrate that the method performs fairly well compared with alternative methods in 

terms of long-term predictive accuracy and coverage. 
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1 Introduction 

Each year, the Congressional Budget Office publishes 30-year projections for federal revenues, 

spending, and debt in its annual Long-Term Budget Outlook report. Those projections are based 

on the assumption that current laws governing federal spending and revenues generally remain 

unchanged. But even if current laws remained unchanged, budgetary outcomes would differ from 

those in CBO’s projections, primarily because of unexpected changes in economic and 

demographic factors. To quantify the uncertainty of budget projections arising from those 

factors, CBO uses a series of simulations for spending and revenues, each reflecting an 

alternative path for a set of key economic and demographic variables, and examines how federal 

deficits and debt would evolve under each path. Those simulations produce a range of budgetary 

outcomes and thereby illustrate how the uncertainty of economic and demographic variables 

translates into budgetary uncertainty.1 

This paper presents a practical method for assessing the long-term uncertainty of the economic 

variables that underpin budget projections. For the purposes of CBO’s analysis, long-term 

uncertainty is defined as the uncertainty of variables’ average values over a long period of 

time—typically, several decades. (For example, across the 30-year periods that occurred since 

early 1950s, the average growth rate of total factor productivity, or TFP, varied by about 

1 percentage point; the long-term uncertainty of TFP growth arises from that variability.) A 

significant part of the uncertainty of budgetary outcomes in the long term stems from persistent 

changes in economic trends rather than transitory economic fluctuations, or business cycles 

(which tend to average closer to zero over longer periods). Examining the variability of those 

trends is crucial for assessing the risks to the long-term sustainability of federal debt and for 

designing policies that can help to mitigate the budgetary effects of unfavorable economic 

developments. Analyzing the likely range of long-term economic outcomes can also help 

lawmakers better evaluate the size and timing of the policy changes that they may choose to 

implement to address the long-term budget imbalance. 

CBO’s analysis of economic uncertainty is based on simulations from a multivariate unobserved 

components (UC) model that represent a range of potential future paths for economic variables, 

such as the rate of productivity growth and the interest rate on federal debt. In the model, 

variables are specified as sums of individually unobserved stationary and nonstationary 

components. Distinguishing between those components is important for accurately measuring the 

uncertainty of variables over the long term. That is because, although the short-term uncertainty 

of the variables arises from the variability of both components, the long-term uncertainty stems, 

in large part, from the variability of the nonstationary component. 

 
1 Other important sources of the uncertainty about CBO’s budget projections include the uncertainty of future 

government policies and of the models the agency uses to project future economic and budgetary outcomes. 
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Uncertainty in long-term economic projections can be expressed by constructing prediction 

intervals for long-horizon averages of economic time series. A prediction interval is a range in 

which a future outcome is expected to fall with a specified probability. For example, in The 2019 

Long-Term Budget Outlook, CBO estimated that there was roughly a two-thirds chance that the 

average annual growth rate of TFP over the next three decades would be in the range of 0.6 

percent to 1.6 percent. CBO also estimated long-term prediction intervals for other major 

economic variables, including the real interest rate and the unemployment rate. Changes in those 

variables have important effects on the federal budget: Faster TFP growth and a lower 

unemployment rate would mean higher taxable income and revenues and, therefore, lower 

deficits and debt. By contrast, higher interest rates would increase the government’s interest 

payments, causing deficits and debt to be larger than they would be otherwise. 

Estimating prediction intervals for long-term averages of economic time series presents 

significant challenges. First, there is relatively limited information about the variability of long-

term averages in the available sample data for most economic variables. Estimating that 

variability is particularly difficult when the prediction horizon is long relative to the sample size, 

resulting in very few observations of long-term averages. For example, since the end of World 

War II, there have not yet been three nonoverlapping 30-year periods, whereas there have been 

25 nonoverlapping 3-year periods. In addition, long-term statistical properties of a variable 

depend on the exact form of persistence that the variable displays. For example, as discussed in 

Müller and Watson (2018), random walks have different long-term properties than fractionally 

integrated or serially correlated stationary variables. But there is often limited information in the 

sample data to precisely distinguish between different forms of persistence. 

The recent research offers new insights into long-term prediction and inference. Müller and 

Watson (2016) develop methods for conducting inference about the long-term variability of 

economic time series and construct prediction sets for long-term averages. Those methods 

provide theoretically valid prediction intervals under a wide range of stochastic processes 

exhibiting different forms of persistence, including local-level, local-to-unity, and fractionally 

integrated forms. Zhou et al. (2010) propose an alternative approach to constructing prediction 

intervals based on estimated long-term standard deviations and sample quantiles. Chudy at al. 

(2020) propose adjustments that improve the predictive performance of the method of Zhou et al. 

(2010) over long horizons. In a related branch of the literature, Stock (1996) and Phillips (1998) 

show that standard methods of estimating long-term prediction intervals and impulse response 

functions (which describe how economic variables respond to various shocks over time) produce 

biased estimates if variables exhibit a high degree of persistence, and Pesavento and Rossi 

(2006) propose an approach to constructing confidence intervals for impulse responses when 

variables are highly persistent. 

Compared with some of the recently developed methods, including those of Müller and Watson 

(2016) and Chudy et al. (2020), the simulation-based UC approach presented in this paper can 
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more easily accommodate a multivariate framework. Assessing the interactions of multiple 

variables is important for CBO’s analysis because correlations between economic variables 

matter for budgetary outcomes. For example, if slower output growth is associated with lower 

interest rates, a reduction in revenues caused by slower growth in TFP would be paired with 

lower interest payments on debt, which could offset the effect on deficits from slower TFP 

growth. Müller and Watson (2018) develop a method for assessing the long-term covariability of 

economic variables. But implementing that method in a setting with more than two variables 

carries a heavy computational burden. 

The simulation-based UC method offers a practical solution to assessing the long-term variability 

of more than two economic variables. The method is computationally manageable and relatively 

simple to implement, and it offers a seamless analysis of both short- and long-term uncertainty. It 

is, however, less robust under alternative forms of persistence that economic variables may 

display than are some of the recently developed, state-of-the-art methods (including those of 

Müller and Watson, 2018). Nevertheless, a comparison of the predictive performances of 

different methods based on Monte Carlo experiments indicates that, despite being less robust 

than some of the recently developed methods, the UC method fares reasonably well in terms of 

long-term predictive accuracy and coverage. Ultimately, however, all methods are subject to the 

fundamental limitation that there are very few observations of long-term averages in any limited 

sample period. Therefore, the amount of low-frequency information that can be gleaned from the 

available data and our ability to precisely estimate long-term prediction intervals are limited. 

Section 2 of this paper lays out the UC model and describes how it is used to decompose 

variables into stationary and nonstationary components. Section 3 discusses the estimation of 

model parameters and presents the estimated prediction intervals for TFP growth, the 

unemployment rate, and the real interest rate, which are based on a series of simulations each 

reflecting an alternative future path for those variables. Section 4 conducts Monte Carlo 

experiments on simulated data produced by artificial processes that mimic the historical behavior 

of a set of key macroeconomic variables and also compares the predictive performance of the 

UC method with that of alternative methods. Section 5 provides concluding remarks. 

2 The Method 

CBO assesses the relationship between economic factors and budgetary outcomes by examining 

how federal spending and revenues would change if key economic variables differed from the 

agency’s baseline projections (see CBO, 2016). Previously, those assessments included variables 

such as the size of the labor force, the growth rate of TFP, the interest rate on federal debt, and 

the growth rate of federal spending per beneficiary for Medicare and Medicaid. One set of 

simulations shows the range of budgetary outcomes that would occur if a single economic 

variable differed from CBO’s baseline. A second set of simulations shows the range of outcomes 

that would occur if multiple variables differed from baseline projections simultaneously. Those 
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simulations illustrate the sensitivity of budgetary outcomes to economic factors but shed no light 

on the probabilities of different economic scenarios. The UC approach to conducting multivariate 

simulations offers a basis for probabilistic assessments of future economic developments. 

To distinguish between transitory and permanent movements (underpinning the short- and long-

term uncertainty of the variables), the UC approach formulates each variable as a sum of 

individually unobserved stationary and nonstationary components by using the following 

specification: 

 

       𝑌𝑡 = 𝜇𝑡 + 𝑋𝑡 + 𝑤𝑡

𝜇𝑡 = 𝜇𝑡−1 + 𝜀𝑡

                                 𝑋𝑡 = 𝐴1𝑋𝑡−1 +⋯+ 𝐴𝑞𝑋𝑡−𝑞 + 𝑢𝑡

 

 (1) 

 

The vector Yt collects the variables of interest, including the growth rate of TFP, the 

unemployment rate, and the real interest rate on 10-year Treasury securities (calculated by 

subtracting inflation as measured by the consumer price index from the nominal interest rate on 

those securities). We use annual data for all three variables, and our sample period runs from 

1953 to 2021 (see Table 1). 

 

Table 1. 

Statistical Summaries of the Variables 

Percentage Points      

TFP Growth 

Mean   Median SD  17th Percentile 83rd Percentile 

1.3 1.1 1.6 0.1 2.9 

Unemployment Rate 5.9 5.6 1.6 4.4 7.4 

Real Interest Rate 2.1 2.2 2.5 0.3 3.9 

Data source: Congressional Budget Office. 

The sample includes annual data from 1953 to 2021. The unemployment rate is the number of unemployed people as a percentage of the civilian labor 

force. The real interest rate in each year is calculated by subtracting inflation as measured by the percentage change in the consumer price index for all 

urban consumers over 12 months from the nominal interest rate on 10-year Treasury notes. Numbers are rounded to the nearest tenth of a percentage 

point.  

SD = standard deviation; TFP = total factor productivity. 

 

The vector random walk process, µt, captures the nonstationary components of the variables. The 

vector autoregression (VAR) process, Xt, represents the stationary components, which may 

themselves be highly persistent. The third component, wt, is a white noise process, which may 
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represent one-off shocks or measurement error. Vectors wt, εt, and ut are normally distributed 

with zero means and covariance matrices Ωw, Ωε, and Ωu, respectively. 

The UC framework (1) nests a number of relevant special cases. The framework generalizes a 

stationary VAR model, which corresponds to the case Ωε = 0. Furthermore, restrictions on the 

elements of A1, …, Aq and Ωu deliver models similar to those of Laubach and Williams (2003), 

Holston et al. (2017), and Lewis and Vazquez-Grande (2019), which have been used to estimate 

the natural rate of interest. 

The UC model provides a useful and simple framework for analyzing both the short- and the 

long-term variation of economic variables, but it is subject to limitations. One limitation stems 

from the assumption of homoskedasticity—the specification that the variances of the error terms 

εt and ut are constant over time. Also, εt, ut, and wt are assumed to be independent of one another 

(which is a commonly adopted specification in the literature that uses UC models). In addition, 

the elements of A1, …, Aq are time invariant. Relaxing all or a subset of those assumptions can 

result in a more general framework but also increases the number of parameters to be estimated. 

With small samples, increasing the number of estimated parameters by incorporating additional 

structure into the model (for example, by introducing time-varying parameters or cross-

correlations across all elements of εt, ut, and wt) tends to result in greater estimation uncertainty 

and less accurate out-of-sample predictions. The relatively parsimonious specification of 

model (1) helps to reduce estimation uncertainty while incorporating sufficient detail to account 

for both the stationary and the nonstationary components of the variables. 

3 Estimation and Prediction Intervals 

In the first step of our analysis, we use Bayesian methods to estimate the parameters of the UC 

model (1) and the historical paths of the nonstationary (µt) and stationary (Xt and wt) components 

of the variables. We then construct prediction intervals by conducting stochastic simulations 

(also known as Monte Carlo analysis). Those simulations yield ranges (determined with a 

specified probability) in which future values of variables are expected to fall. 

3.1 The State-Space Form 

We first express the system of equations (1) in the following state-space form: 

      𝐒𝑡+1 = 𝐅 ∙ 𝐒𝑡 + v𝑡+1

                𝐘𝑡 = 𝐌+𝐇 ∙ 𝐒𝑡 + 𝑤𝑡

 

(2) 

where the state vector, 𝐒𝑡, and the vector of innovations, v𝑡, are defined as  
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and the matrices F, H, and M have the following forms: 

 

where n denotes the number of variables in Yt, and In×n is an n-by-n identity matrix. We set the 

parameter q (the lag length of the VAR component) to 2 and specify the covariance matrix of vt 

as 

, 

where the term 0x×y represents an x-by-y matrix of all zeros, and 

 .   (3) 

As the covariance matrix (3) suggests, we allow each variable to have a nonstationary 

component and also allow those components to be correlated with each other. 

3.2 Priors 

In the next step, we set the prior distributions of the parameters. The variability of the 

nonstationary, or trend, components of Yt (elements of µt) plays an important role in our analysis. 

For the standard deviations of the trend shocks (elements of εt), we choose an inverse-gamma 

(IG) distribution. The domain of the IG distribution is the set of positive real numbers and 
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therefore excludes zero. By incorporating the prior belief that trend shocks have strictly positive 

variance, the IG specification counters the tendency of maximum-likelihood estimates of that 

variance to be biased toward zero—a phenomenon known as the pileup problem (see Stock, 

1994). We set the means of the standard deviations of the trend shocks to reflect the prior belief 

that the elements of Xt drive about one quarter of the variation of each element of Yt that is 

generated by cycles with periodicities longer than 12 years (and estimated by using a band-pass 

filter). 

In addition, we incorporate the prior belief that the autoregressive parameters of the stationary 

component, Xt, are independent and normally distributed with the following properties: 

 

𝐸[(𝐴𝑠)𝑗𝑘]      =    0 for all 𝑠, 𝑗, and 𝑘.

𝑉𝑎𝑟[(𝐴𝑠)𝑗𝑘]   =     

{
 

 
𝜆2

𝑠2
  if  𝑗 = 𝑘

𝜔
𝜆2

𝑠2

𝜎𝑗
2

𝜎𝑘
2 , otherwise.

 
 

The term (𝐴𝑠)𝑗𝑘 represents the jth row and kth column element of the matrix 𝐴𝑠 (where s denotes 

lag length), and E[x] and Var[x] denote the expected value and variance of x, respectively. The 

parameter λ controls the tightness of the prior information, ω measures the extent to which the 

tightness of the priors on a variable’s own lags differs from the tightness of those on other 

variables’ lags, and the ratio 𝜎𝑗
2/𝜎𝑘

2 corrects for the differences in the scales of the variables j and 

k. The prior distribution of the autoregressive parameters of Xt are centered around zero because 

the stationary components of the variables, once separated from the random walk components, 

are expected to display a substantial degree of mean reversion. The specification of variances 

(which is based on a set of beliefs known as the Minnesota prior) reflects the view that each 

variable’s own lagged values provide better prior information about that variable’s dynamics 

than do the lags of other variables, and distant lags of a variable are less important drivers of its 

variation than are the variable’s more recent lags (see Litterman, 1986). We set the tightness 

parameter, λ2, to 0.64, which implies that there is roughly a two-thirds prior probability that the 

elements of A1 are between −0.8 and 0.8, and follow Doan (1990) in setting w to 0.5. Following 

Litterman (1986), we set 𝜎𝑗  (for j = 1, 2, …, n) by using the standard deviations of the residuals 

from regressions of the elements of Yt on a constant and q of their own lagged values. We use 

diffuse priors for the remaining parameters. 

3.3 Estimating the Model 

Estimated parameters include the elements of F, M, and H and the covariance matrices of vt and 

wt. We calculate the log of the posterior density of the parameters (up to a normalizing constant) 

by summing the log of the sample likelihood, log 𝐿(𝑌𝑡| Θ), and the log of the prior density of the 

parameters, log 𝜋 (Θ). That is, we calculate 
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𝑄(Θ|𝑌1, 𝑌2, …,𝑌𝑇) =∑log 𝐿

𝑇

𝑡=1

(𝑌𝑡| Θ) + log 𝜋 (Θ)                                               (4) 

where the vector Θ contains the parameters of the model and T denotes the size of the sample. 

We compute the sample likelihood by starting with an initial guess for the state vector, St, and 

recursively applying the Kalman filter (see Hamilton, 1994).2 We simulate the parameters’ 

posterior distribution by using a Markov chain Monte Carlo (MCMC) procedure.3 The MCMC 

method produces a joint distribution that approximates the true posterior distribution of the 

parameters. 

Figure 1 shows the historical paths of the nonstationary components of the growth rate of TFP, 

the unemployment rate, and the real interest rate estimated by using the mode of the posterior 

distribution described by equation (4). The nonstationary component of the real interest rate is 

estimated to be more volatile than those of TFP growth and the unemployment rate. In addition, 

the trend component of TFP growth is, on average, greater in the first half of the sample than in 

the second half, and it shows a noticeable drop that starts in early 2000s. The nonstationary 

component of the real interest rate also exhibits a downward drift that seems to have started in 

the mid-1980s and accelerated after the early 2000s. The properties of the estimated trend 

components of TFP growth and the real interest rate are consistent with the empirical regularities 

highlighted in the literature examining the causes and consequences of the so-called productivity 

slowdown (see, for example, Gordon, 2014; Fernald, 2015) and secular stagnation (see Laubach 

and Williams, 2003; Holston et al., 2017). Those patterns are insensitive to specifying the 

unemployment rate as a stationary variable (based on the finding that standard univariate tests 

reject the null hypothesis of the unit root at conventional levels of significance) by setting all 

corresponding elements of the covariance matrix (3) (that is, 𝜎12, 𝜎23, and 𝜎2
2) to zero. However, 

the simulated distribution of the parameters is sensitive to the assumptions about the number of 

variables that incorporate a nonstationary component. 

3.4 Constructing Prediction Intervals 

We quantify uncertainty by constructing prediction intervals, or ranges, that contain the future 

values of the variables of interest with a specified probability. Our approach to constructing 

prediction intervals captures both the uncertainty stemming from the randomness of shocks (that 

is, the uncertainty of the future values of the elements of vt and wt) and parameter uncertainty. 

The former reflects forecast uncertainty about what the future will hold. The latter arises because 

the model parameters (the elements of F, M, and H and the covariance matrices of vt and wt) are  

 
2 To reduce the sensitivity of the results to the initial state vector, we assign large values to the diagonal elements of 

the initial state covariance matrix. 

3 See Chib (2001) for a detailed discussion of MCMC methods. 
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Figure 1. 

Estimated Nonstationary Components of the Variables 

Percentage Points 

 

Data source: Congressional Budget Office. 

All variables are defined in percentage points. The unemployment rate is the number of unemployed people as a percentage of the civilian labor force. 

The real interest rate is calculated by subtracting inflation as measured by the consumer price index for all urban consumers from the nominal interest 

rate on 10-year Treasury notes.  

TFP = total factor productivity. 
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unknown and their estimates are based on sample data and, therefore, are subject to sampling 

uncertainty. 

We capture parameter uncertainty in our simulations by drawing sets of parameter values from 

the posterior distribution produced by the MCMC method. To capture forecast uncertainty, for 

each draw from the posterior distribution of the parameters, we draw a large number of 

sequences—each the same length as the data sample—for the elements of vt and wt. Then, for 

each sequence, we iterate the system of equations (2) forward and construct 30-year series, each 

corresponding to an alternative future path for the variables in Yt. For each series, we then 

calculate 30-year moving averages and construct prediction intervals containing the middle two-

thirds of the simulated distribution (that is, the range of values between the 17th and 83rd 

percentiles) of the averages of each variable.  

CBO does not use the simulation-based UC method to estimate the long-term averages of 

economic variables. Those estimates are based on CBO’s full forecasting framework and detailed 

analysis. The agency uses the UC method only to quantify the uncertainty of those averages. To 

ensure that the ranges produced by the UC method are consistent with CBO’s central projections, 

when conducting simulations to construct prediction intervals, we calculate variables’ deviations 

from the unconditional forecasts produced by the UC model in each simulation and apply those 

deviations to CBO’s central projections.  

An important statistical property of the macroeconomic variables we examine is the skewness in 

the distribution of the unemployment rate: The right tail of that distribution extends farther out 

than its left tail (see McGrane, 2022, and Dupraz et al., 2020). We capture that property in our 

simulations by including the log of the unemployment rate in the vector Yt rather than the 

unemployment rate itself. Under the linear structure of the UC model, shocks to the stationary 

and nonstationary components of Yt induce symmetric movements in the log of the 

unemployment rate. Because the log function is a concave transformation, symmetric increases 

and decreases in the log of the unemployment rate translate into increases in the unemployment 

rate that are larger in magnitude than decreases, thereby inducing a distribution for the 

unemployment rate that is skewed toward the right tail.  

Figure 2 shows the prediction intervals for the 30-year moving averages of the variables. We also 

construct prediction intervals for averages over the next 15 and 30 years (see Table 2). Our 

results indicate that there is a two-thirds chance that the average annual growth rate of TFP will 

be between roughly 0.7 percent and 1.5 percent over the next three decades (when rounded to the 

nearest tenth of a percentage point). That range is somewhat narrower than the 67 percent 

prediction interval estimated in Müller and Watson (2016) for the average TFP growth rate over 

25 years. Although we do not report it here, we also find that the intervals for the average TFP  
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Figure 2. 

Prediction Intervals for 30-Year Moving Averages 

Percentage Points 

 

Data source: Congressional Budget Office. 

All variables are defined in percentage points. The upper and lower bounds indicated by the dashed lines correspond to the 17th and 83rd percentiles of 

the 30-year moving averages of each variable. The unemployment rate is the number of unemployed people as a percentage of the civilian labor force. 

The real interest rate is calculated by subtracting inflation as measured by the consumer price index for all urban consumers from the nominal interest 

rate on 10-year Treasury notes. 

 TFP = total factor productivity. 
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growth over the next few years are wider than those for longer-term averages. That is because the 

transitory component of TFP growth—which drives a relatively large share of that variable’s 

overall variance in the sample period—averages closer to zero over longer periods. 

The range that covers two-thirds of simulated outcomes is −0.8 percent to 3.5 percent for the 30-

year average real interest rate and 3.7 percent to 5.9 percent for the unemployment rate. Those 

ranges are considerably wider than the ranges for the growth rate of TFP because the low-

frequency components of those series (especially those of the real interest rate) are more variable 

than the low-frequency components of the TFP growth rate.  

Co-movements of variables’ low-frequency components are a key factor underpinning the range 

of long-term outcomes. The estimates for Ωε and Ωu indicate that shocks to the nonstationary 

components of the variables (elements of εt) are correlated, as are the shocks to the stationary 

components of the variables (elements of ut). Therefore, the factors driving, for example, the 

long-term uncertainty of TFP growth also affect the long-term uncertainty of the unemployment 

and real interest rates. 

Table 2. 

Prediction Intervals for Long-Term Averages 

Percentage Points   

15-Year Horizon  

     TFP growth rate 

         17th Percentile 83rd Percentile 

0.7 1.5 

Unemployment rate 3.6 5.8 

Real interest rate -1.3 2.4 

30-Year Horizon  

  TFP growth rate 0.7 1.5 

Unemployment rate 3.7 5.9 

Real interest rate -0.8 3.5 

Data source: Congressional Budget Office.  

The unemployment rate is the number of unemployed people as a percentage of the civilian labor force. The real interest rate is calculated by 

subtracting inflation as measured by the consumer price index for all urban consumers from the nominal interest rate on 10-year Treasury notes. 

Numbers are rounded to the nearest tenth of a percentage point.  

TFP = total factor productivity. 

3.5 Long-Term Correlations 

The correlations among economic variables matter for budgetary outcomes, in both the short and 

the long term. For example, if the growth rate of TFP is positively correlated with the real 

interest rate, then faster economic growth resulting in higher-than-projected federal revenues 

could also mean higher interest rates and, therefore, increased interest payments on federal debt, 



13 

which could offset the effect of higher revenues on deficits. If TFP growth correlates negatively 

with the unemployment rate, then higher revenues and lower deficits resulting from faster growth 

of taxable income would be paired with reduced federal spending for programs such as 

unemployment insurance, which would further reduce deficits. 

A useful summary of the long-term statistical relationships between economic variables is 

provided by long-term correlations, which are defined as the correlations between long-horizon 

averages of variables. They differ from conventional correlations when variables exhibit serial 

dependence—a property that permeates virtually all of the economic variables we examine. The 

simulation-based approach to constructing prediction intervals outlined in the previous section 

can also be used to assess the long-term correlations between economic variables. Each 

simulated sequence of the vector Yt—produced under a given parameterization of the 

model (2)—yields a value for the 30-year average of each macroeconomic variable. We estimate 

the long-term correlations between variables by calculating the correlations among those 30-year 

averages. We then estimate the distribution of each long-term correlation (and construct 

confidence intervals) by repeatedly drawing from the simulated chain of model parameters and 

calculating the correlations produced under each draw. 

The median estimate of the long-term correlation between the growth rate of TFP and the 

unemployment rate is −0.43 (see Table 3). An increase in the average TFP growth rate is, 

therefore, associated with a drop in the average unemployment rate over the long term. That 

result is consistent with the findings of Müller and Watson (2018) and Staiger et al. (2001): 

Using different estimation methods, both studies find a negative long-term correlation between 

TFP growth and the unemployment rate. The estimated standard error is large (primarily 

reflecting parameter uncertainty), which indicates the inexactness of estimating long-term 

correlations in relatively short samples.    

Table 3. 

Long-Term Correlations of the Growth Rate of TFP With the  
Unemployment Rate and Real Interest Rates 

 Long-Term Correlations With TFP Growth Rate 

 
Unemployment Rate 

 
Real Interest Rate 

Median -0.43   0.18 

Standard Error  0.37   0.36 

Data source: Congressional Budget Office. 

The unemployment rate is the number of unemployed people as a percentage of the civilian labor force. The real interest rate is calculated by 

subtracting inflation as measured by the consumer price index for all urban consumers from the nominal interest rate on 10-year Treasury notes.  

TFP = total factor productivity. 
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The median estimate of the long-term correlation between the growth rate of TFP and the real 

interest rate is 0.18 (but the standard error is large, as is that of the long-term correlation between 

TFP growth and the unemployment rate). A positive long-term correlation between TFP growth 

and the real interest rate is consistent with the view that one contributor to the steady decline in 

real interest rates over the past four decades is the slowdown in the trend growth rate of the 

economy. Holston et al. (2017) find evidence that the natural rate of interest (defined as the real 

interest rate consistent with an economy operating at full employment) and the trend growth rate 

of output display a strong co-movement. Likewise, Del Negro et al. (2017) find that one of the 

main factors driving the persistent decline in the natural rate of interest has been slow economic 

growth.4 A positive correlation between the long-term growth rate of the economy and the real 

interest rate also emerges in a broad class of dynamic general equilibrium models. For example, 

in the standard neoclassical growth model, an increase in the trend growth rate of the economy 

has the same effect on the real interest rate as a drop in households’ time discount factor, which 

boosts the real rate by reducing the desire to save.5 

4 Assessing the Predictive Performance of the UC Method 

In this section, we evaluate the predictive performance of the UC method by using Monte Carlo 

experiments, whereby we apply the method to artificially generated data with known statistical 

properties. The data generating processes (DGPs) we use in these experiments mimic the key 

characteristics of U.S. macroeconomic time series, in particular, the growth rate of TFP and the 

real interest rate. We also compare the accuracy of our method with those of alternative 

approaches. 

4.1 Data Generating Processes 

Assessments of a method’s long-term predictive accuracy that are based on actual 

macroeconomic time series are often uninformative because the period over which variables are 

averaged is long relative to the length of the available data sample, resulting in very few 

observations that can be used to assess a method’s performance. For example, the available 

sample for TFP growth rates does not yet include three nonoverlapping 30-year subsamples, 

thereby offering very few actual observations for the 30-year average TFP growth rate. Because 

of that limitation, we test the predictive performance of the UC method on simulated data 

produced by artificial DGPs with specified properties. 

 
4 By using a sample going back to the early 19th century, Hamilton et al. (2016) find that the correlation between the 

growth rate of the economy and the real interest rate has been positive after World War II. But they also find that the 

correlation is weak in the full sample. See Gamber (2020) for a review of the literature examining the relationship 

between the slowdown in trend growth and the decline in real interest rates. 

5 CBO’s long-term economic projections also incorporate a positive relationship between the projected growth rate 

of TFP and the real interest rate. See Congressional Budget Office (2021). 
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To generate data that closely mimic the statistical properties of macroeconomic variables such as 

the TFP growth rate and the real interest rate, we adopt DGPs that produce stationary and 

nonstationary variation as well as level and volatility breaks. We conduct two sets of 

experiments: First, we generate data for three variables by adopting the following independent 

processes used in Müller and Watson’s (2016) Monte Carlo analysis: 

The three DGPs cover various key properties of U.S. macroeconomic time series in the post–

World War II period. DGP 1 mimics the behavior of TFP growth: The zero-mean stationary 

component, r1t, gives the process the appearance of a serially independent series. But the random 

walk component, µ1t, displays permanent level shifts. Those shifts occur sporadically, and their 

timing is determined by the indicator variable s1t, which follows an independently and identically 

distributed Bernoulli process with success probability P(s1t = 1) = p. The level shifts are of size 

|δ1t |= δ, where positive and negative signs have the same chance of occurring.6 DGP 2 mimics 

the behavior of the real interest rate, exhibiting a high degree of serial correlation and persistent 

drifts. The main feature distinguishing DGP 2 from DGP 1 is serial correlation in the error term 

r2t, which now follows an autoregressive process.7 Finally, DGP 3 involves shifts in volatility; 

that process is motivated by the properties of the macroeconomic data, such as the persistent 

reduction in the volatility of the growth rates of real gross domestic product (GDP) and various 

other measures of real economic activity that is estimated to have started in mid-1980s and ended 

with the 2008 financial crisis. The three DGPs together provide a useful testing framework 

because they feature a more general set of dynamic properties (including time-varying volatility) 

than those the UC framework is designed to capture. 

In the second set of experiments, we allow the nonstationary components of the DGPs to be 

correlated with each other. Specifically, we set sit = st for all i’s (where the Bernoulli process st 

has the success probability p), and we specify the joint distribution of the shocks to the 

nonstationary components as 

 
6 The distributions of sit are independent and identical. 

7 Müller and Watson (2016) consider alternative values for p and in their Monte Carlo analysis. In the first set of 

experiments, we generate data by using Müller and Watson’s larger values (which they denote plarge and dlarge) and 

set p so that permanent shifts occur, on average, once in a decade for all three DGPs, and we set δ to 0.375, 1, and 

0.1875 for DGP 1, DGP 2, and DGP 3, respectively. Also following Müller and Watson, we set the autoregressive 

parameter, ρ, to 0.98. We set the standard deviations w1, w2, and w3 to 1.5, 0.46, and 0.707, respectively. 
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[

𝛿1𝑡

𝛿2𝑡

𝛿3𝑡

]~𝑁(𝟎3×1, [

𝜎1
2 𝜎12 𝜎13

𝜎12 𝜎2
2 𝜎23

𝜎13 𝜎23 𝜎3
2

]) 

where both the diagonal and nondiagonal elements of the covariance matrix are different from 

zero.8 

4.2 Monte Carlo Analysis 

To test the predictive performance of our method, we use the DGPs to produce a large number of 

data sequences—each of length T—for a vector process including three variables. We then split 

each sequence into two parts, one containing the first T1 observations in the series and the other 

containing the remaining T2 = T−T1 observations. We treat the first part of each sequence as 

actual sample data and use each method to construct prediction intervals for the average values 

of the variables over the next T2 years. Then, for each variable, we examine whether the 

prediction interval contains the average value of the variable in the second part of the sequence. 

We calculate the coverage probability for each variable by assessing the frequency with which 

the estimated prediction intervals contain the actual average values (that is, by measuring the rate 

at which actual T2-year averages fall within the prediction intervals). In all experiments, we set 

the averaging horizon, T2, to 30 years. To facilitate comparison with the results of Müller and 

Watson (2016), we set T1 to 65 years, which matches the length of the samples they simulate in 

their Monte Carlo analysis.9 

Coverage probability provides a useful criterion for assessing the accuracy of a method’s 

prediction intervals. If one seeks to construct intervals that contain, for example, two-thirds or 

roughly 67 percent of the potential average values of a variable, then one prefers the coverage 

probability to be as close as possible to the nominal value of 67 percent. Values smaller or 

greater than 67 percent indicate undercoverage or overcoverage, which might occur, for 

example, if the method in question fails to accurately capture the true composition of stationary 

and nonstationary components of the variables.  

We test the accuracy of the UC method by comparing its coverage probabilities with the nominal 

value of 67 percent. We then compare the method’s coverage with those of two alternative 

 
8 We use the following values for the elements of the covariance matrix: 𝜎1

2 = 0.10 𝜎2
2 = 𝜎3

2 = 0.12, 𝜎12 =
0.02, 𝜎13 = 0.01, 𝜎23 = −0.03. 

9 We compute coverage probabilities by generating a total of 250,000 data sequences (or 500 sets with each set 

containing 500 sequences). Each sequence includes 95 years of simulated data for each variable. 
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methods. The first method is based on the estimated long-term, or asymptotic, covariance matrix 

of the variables.10 The second one is the method developed in Müller and Watson (2016). 

4.2.1 Asymptotic Covariance Method. Let 𝑌̅𝑇+1:𝑇+𝑛 denote the average of the vector Yt 

between periods T + 1 and T + n. If the variables in Yt are stationary, then the large-sample 

distribution of 𝑌̅𝑇+1:𝑇+𝑛 is N(µ, n-1Ω), where µ and Ω, respectively, denote the mean and the 

asymptotic variance of Yt. However, the mean is unknown and, therefore, has to be estimated on 

the basis of sample data. Incorporating the additional uncertainty arising from the estimation of 

the mean, the distribution of 𝑌̅𝑇+1:𝑇+𝑛 can be found as 

 𝑁[𝑌̅1:𝑇, (𝑇
−1 + 𝑛−1)Ω],  (5) 

denotes the sample average of Yt. The asymptotic covariance where 

matrix, Ω, is also unknown and has to be estimated. To that end, we use a well-established HAC 

(heteroskedasticity-and-autocorrelation-consistent) covariance matrix estimator, which takes the 

form 

 

 

where 𝑌̃1:𝑇 denotes the difference between Yt and the sample mean 𝑌̅1:𝑇 , and the parameter r 

(known as the lag truncation number) is a positive integer.11 

To construct prediction intervals for T2-year averages of the variables, we generate a large 

number of draws from the distribution (5) after replacing Ω with its estimated counterpart and 

setting the averaging horizon n to T2. We then compute the coverage probabilities in the same 

way as explained earlier.  

4.2.2 Müller and Watson’s Method. The method developed in Müller and Watson (2016) 

provides a basis for constructing prediction intervals for long-term averages of economic time 

series and yields asymptotically valid prediction sets under many different forms of long-term 

persistence, including local-level, local-to-unity, and fractionally integrated forms. Müller and 

Watson compute coverage probabilities for their prediction sets by using artificial data from five 

different data generating processes including DGPs 1, 2, and 3. They report two sets of coverage 

probabilities. The first set is based on a Bayesian approach and accounts for the uncertainty of 

the parameters governing variables’ long-term persistence properties. The second set is based on 

a more robust approach to estimating prediction intervals and achieves frequentist coverage 

 
10 For an application of that approach to estimating the long-run correlation between productivity growth and real 

interest rates, see Hansen and Seshadri (2013). 

11 We set the value of that parameter by using the selection criterion proposed in Newey and West (1994). 
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across the space of parameters that determine the persistence properties of the variables. We use 

the coverage probabilities based on Müller and Watson’s robust approach as a benchmark for 

evaluating the coverage performance of the UC method. 

4.3 Results 

Table 4 shows the coverage probabilities of the UC method and those produced by the alternative 

methods. Values that are significantly larger or smaller than the nominal value of 67 percent 

suggest overcoverage or undercoverage and indicate a mismatch between the estimated 

prediction intervals and the likely range of outcomes for the variable being examined. 

Overall, the UC method performs reasonably well under the three DGPs. Although the method’s 

coverage rates under DGP 1 (the process with serially independent transitory shocks) and DGP 2 

(the process with nonstationary and serially correlated stationary components) are different from 

the nominal value, the rate is correct under DGP 3 (the process with stochastic volatility breaks) 

when DGPs have independent nonstationary components. Moreover, when the nonstationary 

components of the variables are correlated, the UC method exhibits slightly improved coverage 

performance under DGPs 1 and 2 compared with the case in which the nonstationary 

components are independent. 

Table 4. 

Coverage Probabilities 

With Independent Nonstationary Components 

UC method 

DGP 1 DGP 2 DGP 3 

0.71 0.61 0.67 

Asymptotic covariance method 0.37 0.19 0.21 

Müller and Watson’s (2016) method 0.67 0.70 0.65 

With Correlated Nonstationary Components 

UC method 0.70 0.63 0.69 

Asymptotic covariance method 0.42 0.24 0.23 

Müller and Watson’s (2016) method n.a. n.a. n.a. 

Data sources: Congressional Budget Office; Müller and Watson (2016)  

The coverage probabilities of Müller and Watson’s (2016) method are reported on the eighth row of Table 3 in that work.  

DGP = data generating process; UC = unobserved components; n.a.= not available. 

 

Müller and Watson’s (2016) method produces coverage rates that are slightly above the nominal 

value of 67 percent under DGP 2 and slightly below that value under DGP 3, and it achieves 

nominal coverage under DGP 1 when the nonstationary components of the variables are 

uncorrelated. Those produced by the asymptotic covariance method are much smaller than the 

nominal value under all DGPs in both sets of experiments. That method severely undercovers 

when variables contain nonstationary as well as stationary components because the estimated 

asymptotic covariance matrix underlying the method is based on the assumption that variables 
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are stationary. When variables exhibit nonstationary behavior, the assumption of stationarity 

results in prediction intervals that are too narrow and, consequently, frequent occurrences in 

which the actual outcome falls outside of the estimated interval. By allowing the variables to 

incorporate nonstationary components, the simulation-based UC method exhibits improved 

coverage performance relative to the asymptotic covariance method when variables contain 

nonstationary components. 

5 Conclusion 

CBO projects that, if current laws governing taxes and spending generally remained unchanged, 

federal debt as a percentage of GDP would surpass its highest level in history (reached shortly 

after World War II) within a decade and continue to rise over the following several decades. 

However, those projections are subject to substantial uncertainty, especially in the long term. A 

large part of the long-term uncertainty about budget projections arises from the uncertainty of 

economic and demographic variables. This paper outlines a practical approach to quantifying 

economic uncertainty by using simulations from a multivariate UC model (without quantifying 

the budgetary uncertainty that results from the uncertainty of economic and demographic 

variables). Monte Carlo experiments show that the simulation-based UC approach performs 

reasonably well when the variables incorporate both stationary and nonstationary components. 

Assessing the long-term uncertainty of economic variables is challenging because of 

unpredictable structural breaks many variables undergo over long periods and scarcity of low-

frequency information in the sample data (stemming from the small size of the available data 

sample relative to the prediction horizon). Compared with some recently developed state-of-the-

art approaches to constructing long-term prediction intervals, including the methods of Müller 

and Watson (2016, 2018) and Chudy et al. (2020), the UC method is simpler to implement, can 

easily handle a multivariate framework—a key feature given the important role that interactions 

among economic variables play in shaping budgetary outcomes—and offers a unified analysis of 

both short- and long-term uncertainty. However, it is less robust under alternative forms of 

persistence that economic variables may exhibit. As discussed in Müller and Watson (2018), 

formulating a robust approach that seeks to account for all economically relevant forms of long-

term persistence can result in very wide prediction intervals. But limiting the domain of the 

analysis to a narrower range of potential persistence patterns may lead to less reliable inference 

and reduced predictive accuracy. Results of our Monte Carlo analysis indicate that, despite being 

somewhat limited in scope and robustness, the UC method exhibits a fairly competitive overall 

performance in terms of predictive accuracy and coverage under some of the most commonly 

conjectured forms of long-term persistence.  
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